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Abstract—The VLAD (vector of locally aggregated descriptors)
representation, derived from BoF and Fisher kernel, has shown
its efficiency in the field of image search. However, assigning local
descriptors to a codeword is a hard voting process, which does not
consider the uncertainty and the plausibility for single codeword.
In this paper, we propose an approach to combine VLAD with
locality-constrained linear coding, as opposed to the original
one, considering several nearest neighbors when assigning local
descriptors and computing weights. In order to evaluate our
proposed method, experiments are conducted on several image
classification benchmarks, using VLAD for comparison. The
experimental results show that our method stably outperforms
VLAD in terms of classification accuracy, while producing feature
representation of the same dimension without much additional
computational cost.

Index Terms—VLAD, soft-assignment, image classification,
feature representation, LLC

I. INTRODUCTION

Over the last decade, the bag-of-features (BoF), derived
from the bag-of-words model in document analysis, has been
widely used and deeply studied in image classification system.

Generally speaking, the BoF framework used for image
classification consists of five basic components: local features
(e.g., SIFT descriptors [1]) extraction, codebook learning with
training data, feature coding with pre-trained codebook, pool-
ing or aggregating codes over images, and learning classifier
(e.g., SVM) for classification. In this framework, the key
problem is how to encode local features into a vector that
can well represent the whole image.

So far, developed from the hard voting [2] which is simple
but limited in representing descriptors, some coding strategies
to deal with quantization losses have been proposed which
retain more information by expressing features as combina-
tions of visual words (e.g., soft voting [3], [4], sparse coding
[5], locality-constrained linear coding (LLC) [6], and salient
coding [7]). Another extension of this popular framework
includes the use of spatial pyramids [8] to take into account
some aspects of the spatial layout of the image.

Recently, an alternative patch aggregation mechanism has
been proposed, that is used to record the difference between
the features and the visual words (e.g., super-vector cod-
ing [9], Fisher vector (FV) [10], [11], [12], and vector of
locally aggregated descriptors (VLAD) [13]). As with the
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earliest BoF model which adopts hard voting mechanism,
VLAD associates each descriptor to its nearest neighbor in
the pre-trained codebook. The only difference is that VLAD
aggregates residual vectors (i.e., the difference between the
descriptor and the associated visual word) instead of counting
occurrences followed by average pooling.

However, we find that the VLAD representation utilizes
hard assignment of local descriptors to only one nearest
centroid, and there is still much room for further improvement.
To obtain a more powerful vector representation of an image,
our attempts are made to combine VLAD with various soft-
assignment schemes.

In this paper, we propose an approach to combine VLAD
with locality-constrained linear coding, called VLAD-LLC, by
recording the weighted difference between the descriptor and
the reconstruction vector. We use VLAD incorporating spatial
information as our baseline method, where an image is divided
into three pyramid levels with grids of 1 x 1, 2 x 2, 3 x 1, as
suggested in [9]. The implementation details will be discussed
in the following sections.

The remainder of this paper is organized as follows. In
Section II, we discuss the related works. In Section III, we in-
troduce our method and demonstrate how it works. In Section
IV, we give our parameter settings and report experimental
results on three image classification datasets. Finally, Section
V concludes our paper.

II. RELATED WORK

In this section, we briefly review VLAD that produces an
image representation from a set of local descriptors, then
feature coding algorithm LLC and its fast implementation
approximated LL.C are introduced.

A. VLAD

That the vector of locally aggregated descriptors (VLAD)
[13] is proposed to represent image by aggregating lo-
cal features in feature space. A visual dictionary B =
(1, .., uar] € RP*M of M visual words is first learned
using K-means clustering, then the extracted local feature
xi(x; € RP) is assigned to its nearest visual word p; =
NN (z;) in the dictionary using a distance measure. For each
visual word, the residual vectors are accumulated as:
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The accumulated residual vectors corresponding to M
visual words are concentrated to form the VLAD image
representation of M D dimension, where D is the dimension
of local features.
Up till now, some improvement methods have been pro-
posed, which can be roughly divided into three kinds:

o The first is trying to deal with the burstiness phenomenon
of visual elements [14]. This phenomenon is alleviated by
power-law normalization [15] motivated in [11], which
can discount large values in the feature vector.

o The second is dedicated to overcoming the losses in
quantization: [16] has considered multiple vocabularies
with a joint dimensionality reduction to ameliorate the
quantization losses, and [17] proposes vocabulary adap-
tion algorithm to address the problem of vocabulary
sensitivity.

« The last is enforcing equal norms for the residual vectors,
as proposed in [18], modifying the per-word aggregation
step to solve the problem that local descriptors of a given
image do not contribute equally to the original VLAD
representation.

B. LLC

Locality-constrained linear coding (LLC) [6], inspired by
the viewpoint of local coordinate coding (LCC) [19] which
illustrates that locality is more essential than sparsity, uses the
following criteria:
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where C' = [c1,¢a,...,cn] is a set of codes (reconstruction
coefficients) for each descriptor. ® denotes the element-wise
multiply operation, and d; € RM is used to measure the
distance between x; and each visual word enforcing locality
constraint.

In practice, a simplified version of LLC is used to enhance
the coding speed. Ignoring the regularization term in Eq.(2),
the approximated LLC directly selects K (K < M) nearest
basis vectors of each descriptor x; to reconstruct it by mini-
mizing the first term only.

Let 01, ...,0K be the indices of the K visual words closer
to x; in the dictionary and represent them collectively as
B = [fto,,- s Moy ] € RP*K, then the reconstruction coeffi-
cients can be computed by solving the following optimization
problem:
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Approximated LLC is fast in that K is usually a very small
number. Meanwhile, both locality representation and sparsity
representation can be achieved.

III. PROPOSED METHOD

As for the BoF framework, performance gain is achieved by
replacing vector quantization with soft-assignment schemes.
We speculate that, in VLAD, this sort of replacement will also
make sense if the aggregation step considers several nearest
local bases instead of only the nearest visual word.

Based on this assumption, we extend VLAD to a vector
representation which assigns descriptors to several nearest
centroids in feature space. The detailed procedure is illustrated
in Algorithm 1.

Algorithm 1 The procedure of VLAD-LLC
Input:
the set of descriptors x1, ..., x N extracted from an image;
the set of centroids 1, ..., s learned on a trainging set
using K-means;
Compute:
fori=1,...,M do
v; = OD
fort=1,...,N do
find K centroids nearest to x;, with the indices
01,...,0K
% compute the weights W

(wr,.. i)
W= Argming ;=1 [l — Zj:l w; o, |
% reconstruction vector
K
Y= Wik,
Jo accumulate descriptor on nearest K centroids
for j=1,...,K do
Vg, = Vg + W) X (x: —vy)
% accumulated residual vectors are concentrated
_ T T
V =[v] ...vy]
% apply power normalization
foru=1,...,MD do
Vi = sign(Vy,)| Ve |*
% apply L2 normalization
V=Y
NP
Output:
representation V.

S

Our method can be summarized as follows: First, each
local descriptor is associated with K (K > 1) nearest visual
words in the dictionary; then the weights that best linearly
reconstruct the descriptor from its neighbors can be computed;
finally, multiplied by the corresponding weight, the difference
between the descriptor and the reconstruction (reconstructed
by K local bases) is accumulated for each visual word.

Benefiting from the combination of VLAD and LLC,
VLAD-LLC produces an image representation of the same
dimension M D as VLAD at a low extra computational cost
and thus brings no increase in the complexity of the final
classification step.



Compared to VLAD, another improvement of VLAD-LLC
is the strategy of the aggregation step. We accumulate the
weighted difference between the descriptor and the recon-
struction vector rather than the associated visual word directly,
because the latter could achieve little performance gain. The
reconstruction step can be seen as automatical generation
of a new centroid using local bases to deal with codeword
ambiguity, and leads to smaller coefficients for the basis
vectors farther away from a local feature at the same time.

VLAD is a particular case of our proposed method where
the number of nearest neighbors is equal to 1. We show
experimentally that the additional reconstruction step can
ameliorate quantization losses and bring stable improvement
in terms of classification accuracy.

IV. EXPERIMENTAL RESULTS

In this section, we begin with an illustration of our ex-
periments setting, then evaluate the classification performance
of VLAD-LLC compared with VLAD based on three widely
used datasets: Caltech256 [20], Caltech101 [21], and Sports8
[22]. Throughout the experiments, our implementation uses
only SIFT descriptor and linear SVM classifier.

A. Experiments Setting

In our implementation, we first resize the maximum height
of each image to be no more than 480 pixels with preserved
aspect ratio, then employ the 128 dimensional SIFT descriptor
densely extracted on a grid with step size of 4 pixels under
three scales: 16 x 16, 24 x 24, 32 x 32. Next, totally a
million of SIFT descriptors randomly drawn from the training
images are taken as input for K-means clustering to learn a
dictionary with 64 visual words. During the coding processing,
the approximated LLC is actually used, and the number of
nearest codes (K) is set to 4 except on Caltech-256 dataset,
where the number of neighbors varies from 2 to 5. For power
normalization applied in VLAD, the parameter « is set to 0.2
as suggested in [18].

To incorporate spatial information, an image is partitioned
into totally eight sub-regions in three levels of spatial pyramid
as 1 x 1, 2x2, 3x1, and the feature vectors are computed on
the respective sub-regions and then concatenated into a long
feature vector for the whole image that is finally fed into the
linear SVM classifier. Eventually, the performance is measured
by averaging classification accuracies over all categories.

All the experiments are repeated five times with different
random selected training and test samples to obtain reliable
results. The average classification accuracy and the standard
deviation is reported.

B. Experimental Datasets

Three datasets are chosen for evaluation, which are, respec-
tively:
o The Caltech-256 dataset [20] holds 30607 images falling
into 256 categories, each category contains at least 80
images. According to the standard experimental setup,

average classification accuracy
average classification accuracy
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Fig. 1.  VLAD-LLC compared with VLAD under different K neighbors
(Caltech-256)

we randomly pick up 15, 30, 45, and 60 training images
per category, and at most 50 images for test.

o The Caltech-101 dataset [21] contains 9144 images be-
longing to 101 categories, where the number of images
in each category varies from 31 to 800. Following the
common setup during experiment, we use 15 and 30
images per category for training while leaving the rest
for test.

o The UIUC sports event dataset [22] is collected for
image-based event classification. It contains 8 categories
and 1579 images in total, and the size of each category
ranges from 137 to 250. These 8 categories are rowing,
badminton, polo, bocce, snowboarding, croquet, sailing,
and rock climbing. Following the experimental setup used
in [22], we randomly select 70 training images and 60 test
images from each class.

C. Analysis and Discussion

We explore the effect of different small number of neighbors
used for approximated LLC in our proposed method. The
detailed performance comparison is shown in Fig.1.

As can be seen, the results are very impressive: under all the
cases (four types of training number and four values selected
for K), our method can consistently outperform VLAD in
terms of classification accuracy. Since the best result on
Caltech-256 dataset is obtained when K is set to 4, it seems
a fairly good choice for K considering 64 clustering centers.
Thus, the experiments on other datasets simply use this setting.

We also compare our method with several existing coding
schemes [4], [5], [6], [23] reported in the literature. The com-
parison results are shown in Table I. Although the implemen-
tation details may be quite different, it can be concluded that
the baseline method VLAD incorporating spatial information
used in this paper is favorably competitive with other feature



TABLE I
PERFORMANCE COMPARISON ON CLASSIFICATION DATASETS.

(a)Caltech-101

Methods Acc.(%)(Tr.=15) | Acc.(%)(Tr.=30)
ScSPM [5] 67.0 £0.45 73.2+£0.54
LLC [6] 65.43 73.44
VLAD 67.27 £ 0.51 75.21 £ 0.62
VLAD-LLC 69.01 £+ 0.42 77.35 +£0.57
(b)UCUI-Sports
Methods Acc.(%)
localized soft-assignment coding [4] 84.56 + 1.5
laplacian sparse coding [23] 85.31 £ 0.51
VLAD 88.79 £+ 0.99
VLAD-LLC 89.50 4+ 0.83

coding algorithms on classification tasks, and replacing VLAD
with VLAD-LLC can bring considerable performance gain on
these two datasets.

V. CONCLUSION

In this paper, we first use VLAD incorporating spatial
pyramid as an image representation for classification tasks and
evaluate it on several benchmark datasets. Besides, we propose
an approach to combine VLAD with approximated locality-
constrained linear coding which uses local basis to linearly
reconstruct each descriptor.

The experiments on different benchmark datasets verify the
effectiveness of VLAD-LLC under small dictionary size and
demonstrate that our proposed method outperforms original
VLAD at a low extra computational cost in the field of image
classification.

As an indication of our work, VLAD-LLC might serve
as a better image representation not exclusively for image
classification. Further researches can be made by integrating
VLAD-LLC into other image processing tasks.
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